类似于树、图之类的东西,没有标准库的实现,只能自行构建代码

链表

几乎废弃了,压根就没怎么用过

二叉树

构建

  • 结构体定义:
/* 二叉树节点结构体 */
struct TreeNode {
    int val;          // 节点值
    TreeNode *left;   // 左子节点指针
    TreeNode *right;  // 右子节点指针
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
  • 基础构建:
/* 初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建节点之间的引用(指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

遍历

  • 层序遍历(广度优先遍历)
/* 层序遍历 */
vector<int> levelOrder(TreeNode *root) {
    // 初始化队列,加入根节点
    queue<TreeNode *> queue;
    queue.push(root);
    // 初始化一个列表,用于保存遍历序列
    vector<int> vec;
    while (!queue.empty()) {
        TreeNode *node = queue.front();
        queue.pop();              // 队列出队
        vec.push_back(node->val); // 保存节点值
        if (node->left != nullptr)
            queue.push(node->left); // 左子节点入队
        if (node->right != nullptr)
            queue.push(node->right); // 右子节点入队
    }
    return vec;
}
  • 前序遍历
/* 前序遍历 */
void preOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    vec.push_back(root->val);
    preOrder(root->left);
    preOrder(root->right);
}
  • 中序遍历
/* 中序遍历 */
void inOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left);
    vec.push_back(root->val);
    inOrder(root->right);
}
  • 后序遍历
/* 后序遍历 */
void postOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
}

二叉搜索树

构建

同二叉树构建

查找

/* 查找节点 */
TreeNode *search(int num) {
    TreeNode *cur = root;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 目标节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 目标节点在 cur 的左子树中
        else if (cur->val > num)
            cur = cur->left;
        // 找到目标节点,跳出循环
        else
            break;
    }
    // 返回目标节点
    return cur;
}

插入

/* 插入节点 */
void insert(int num) {
    // 若树为空,则初始化根节点
    if (root == nullptr) {
        root = new TreeNode(num);
        return;
    }
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到重复节点,直接返回
        if (cur->val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 插入位置在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 插入节点
    TreeNode *node = new TreeNode(num);
    if (pre->val < num)
        pre->right = node;
    else
        pre->left = node;
}

删除

/* 删除节点 */
void remove(int num) {
    // 若树为空,直接提前返回
    if (root == nullptr)
        return;
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到待删除节点,跳出循环
        if (cur->val == num)
            break;
        pre = cur;
        // 待删除节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 待删除节点在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 若无待删除节点,则直接返回
    if (cur == nullptr)
        return;
    // 子节点数量 = 0 or 1
    if (cur->left == nullptr || cur->right == nullptr) {
        // 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
        TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
        // 删除节点 cur
        if (cur != root) {
            if (pre->left == cur)
                pre->left = child;
            else
                pre->right = child;
        } else {
            // 若删除节点为根节点,则重新指定根节点
            root = child;
        }
        // 释放内存
        delete cur;
    }
    // 子节点数量 = 2
    else {
        // 获取中序遍历中 cur 的下一个节点
        TreeNode *tmp = cur->right;
        while (tmp->left != nullptr) {
            tmp = tmp->left;
        }
        int tmpVal = tmp->val;
        // 递归删除节点 tmp
        remove(tmp->val);
        // 用 tmp 覆盖 cur
        cur->val = tmpVal;
    }
}

邻接矩阵构建

/* 基于邻接矩阵实现的无向图类 */
class GraphAdjMat {
    vector<int> vertices;  // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
    vector<vector<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
 
  public:
    /* 构造方法 */
    GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {
        // 添加顶点
        for (int val : vertices) {
            addVertex(val);
        }
        // 添加边
        // 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
        for (const vector<int> &edge : edges) {
            addEdge(edge[0], edge[1]);
        }
    }
 
    /* 获取顶点数量 */
    int size() const {
        return vertices.size();
    }
 
    /* 添加顶点 */
    void addVertex(int val) {
        int n = size();
        // 向顶点列表中添加新顶点的值
        vertices.push_back(val);
        // 在邻接矩阵中添加一行
        adjMat.emplace_back(vector<int>(n, 0));
        // 在邻接矩阵中添加一列
        for (vector<int> &row : adjMat) {
            row.push_back(0);
        }
    }
 
    /* 删除顶点 */
    void removeVertex(int index) {
        if (index >= size()) {
            throw out_of_range("顶点不存在");
        }
        // 在顶点列表中移除索引 index 的顶点
        vertices.erase(vertices.begin() + index);
        // 在邻接矩阵中删除索引 index 的行
        adjMat.erase(adjMat.begin() + index);
        // 在邻接矩阵中删除索引 index 的列
        for (vector<int> &row : adjMat) {
            row.erase(row.begin() + index);
        }
    }
 
    /* 添加边 */
    // 参数 i, j 对应 vertices 元素索引
    void addEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
            throw out_of_range("顶点不存在");
        }
        // 在无向图中,邻接矩阵关于主对角线对称,即满足 (i, j) == (j, i)
        adjMat[i][j] = 1;
        adjMat[j][i] = 1;
    }
 
    /* 删除边 */
    // 参数 i, j 对应 vertices 元素索引
    void removeEdge(int i, int j) {
        // 索引越界与相等处理
        if (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {
            throw out_of_range("顶点不存在");
        }
        adjMat[i][j] = 0;
        adjMat[j][i] = 0;
    }
 
    /* 打印邻接矩阵 */
    void print() {
        cout << "顶点列表 = ";
        printVector(vertices);
        cout << "邻接矩阵 =" << endl;
        printVectorMatrix(adjMat);
    }
};

邻接表构建

/* 基于邻接表实现的无向图类 */
class GraphAdjList {
  public:
    // 邻接表,key:顶点,value:该顶点的所有邻接顶点
    unordered_map<Vertex *, vector<Vertex *>> adjList;
 
    /* 在 vector 中删除指定节点 */
    void remove(vector<Vertex *> &vec, Vertex *vet) {
        for (int i = 0; i < vec.size(); i++) {
            if (vec[i] == vet) {
                vec.erase(vec.begin() + i);
                break;
            }
        }
    }
 
    /* 构造方法 */
    GraphAdjList(const vector<vector<Vertex *>> &edges) {
        // 添加所有顶点和边
        for (const vector<Vertex *> &edge : edges) {
            addVertex(edge[0]);
            addVertex(edge[1]);
            addEdge(edge[0], edge[1]);
        }
    }
 
    /* 获取顶点数量 */
    int size() {
        return adjList.size();
    }
 
    /* 添加边 */
    void addEdge(Vertex *vet1, Vertex *vet2) {
        if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
            throw invalid_argument("不存在顶点");
        // 添加边 vet1 - vet2
        adjList[vet1].push_back(vet2);
        adjList[vet2].push_back(vet1);
    }
 
    /* 删除边 */
    void removeEdge(Vertex *vet1, Vertex *vet2) {
        if (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)
            throw invalid_argument("不存在顶点");
        // 删除边 vet1 - vet2
        remove(adjList[vet1], vet2);
        remove(adjList[vet2], vet1);
    }
 
    /* 添加顶点 */
    void addVertex(Vertex *vet) {
        if (adjList.count(vet))
            return;
        // 在邻接表中添加一个新链表
        adjList[vet] = vector<Vertex *>();
    }
 
    /* 删除顶点 */
    void removeVertex(Vertex *vet) {
        if (!adjList.count(vet))
            throw invalid_argument("不存在顶点");
        // 在邻接表中删除顶点 vet 对应的链表
        adjList.erase(vet);
        // 遍历其他顶点的链表,删除所有包含 vet 的边
        for (auto &adj : adjList) {
            remove(adj.second, vet);
        }
    }
 
    /* 打印邻接表 */
    void print() {
        cout << "邻接表 =" << endl;
        for (auto &adj : adjList) {
            const auto &key = adj.first;
            const auto &vec = adj.second;
            cout << key->val << ": ";
            printVector(vetsToVals(vec));
        }
    }
};

广度优先遍历

注意

如果在广度优先遍历的过程中还要进行别的操作,例如数连通分量个数,那么就函数的参数就需要以地址形式传递,这样才能穿透函数;

利用广度优先遍历求解最短路径时,必须标记每一个点到起点的最短路径长度,用一个矩阵来存储;

/* 广度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {
    // 顶点遍历序列
    vector<Vertex *> res;
    // 哈希集合,用于记录已被访问过的顶点
    unordered_set<Vertex *> visited = {startVet};
    // 队列用于实现 BFS
    queue<Vertex *> que;
    que.push(startVet);
    // 以顶点 vet 为起点,循环直至访问完所有顶点
    while (!que.empty()) {
        Vertex *vet = que.front();
        que.pop();          // 队首顶点出队
        res.push_back(vet); // 记录访问顶点
        // 遍历该顶点的所有邻接顶点
        for (auto adjVet : graph.adjList[vet]) {
            if (visited.count(adjVet))
                continue;            // 跳过已被访问的顶点
            que.push(adjVet);        // 只入队未访问的顶点
            visited.emplace(adjVet); // 入栈就立即标记该顶点已被访问
        }
    }
    // 返回顶点遍历序列
    return res;
}

深度优先遍历(邻接表实现)

/* 深度优先遍历辅助函数 */
void dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {
    res.push_back(vet);   // 记录访问顶点
    visited.emplace(vet); // 标记该顶点已被访问
    // 遍历该顶点的所有邻接顶点
    for (Vertex *adjVet : graph.adjList[vet]) {
        if (visited.count(adjVet))
            continue; // 跳过已被访问的顶点
        // 递归访问邻接顶点
        dfs(graph, visited, res, adjVet);
    }
}
 
/* 深度优先遍历 */
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
vector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {
    // 顶点遍历序列
    vector<Vertex *> res;
    // 哈希集合,用于记录已被访问过的顶点
    unordered_set<Vertex *> visited;
    dfs(graph, visited, res, startVet);
    return res;
}

深度优先遍历(邻接矩阵实现)

#define MaxVexNum 20 // 最大顶点数目
typedef struct{
    int arcs[MaxVexNum][MaxVexNum];
    int vexnum, edgenum;
} AMGraph;
 
 
void dfs(AMGraph &graph, unordered_set<int> &visited, vector<int> &res, int row){
    res.push_back(row);
    visited.emplace(row); //存储并标记
    
    //遍历邻接节点
    for (int i = 0; i < graph.vexnum;i++){
        if(visited.count(i) || graph.arcs[row][i]==0)
            continue;
        dfs(graph, visited, res, i); //第一个未访问邻接节点处递归
    }
}
 
void graphDFS(AMGraph graph, int start){
    vector<int> res;
    int liantong_num=1; //连通分量数目
    unordered_set<int> visited; //访问标记
    dfs(graph, visited, res, start); //初始化深度优先遍历
    
    // 遍历所有节点,找到不同连通分量
    for (int i = 1; i < graph.vexnum;i++){
        if(visited.count(i)) //已经访问过
            continue;
        else{ //未访问意味着一个新的连通分量
            liantong_num++;
            unordered_set<int> temp_visited;
            dfs(graph, temp_visited, res, i);
            for(int k:temp_visited){
                visited.emplace(k);
            }
            temp_visited.clear();
        }
    }
 
    for(int num:res){
        cout << num << " ";
    }
    cout << endl;
    cout << liantong_num << endl;
}